Vitamin D receptor inhibits EMT via regulation of the epithelial mitochondrial function in intestinal fibrosis

Male 0303 health sciences Epithelial-Mesenchymal Transition Dextran Sulfate Epithelial Cells Fibrosis Mitochondria Mice, Inbred C57BL Intestinal Diseases Mice 03 medical and health sciences Crohn Disease Animals Humans Receptors, Calcitriol Research Article Signal Transduction
DOI: 10.1016/j.jbc.2021.100531 Publication Date: 2021-03-12T03:34:34Z
ABSTRACT
We previously showed that the vitamin D receptor (VDR) plays a crucial role in acute inflammatory bowel disease and that intestinal fibrosis is a common complication of Crohn's disease (CD). Epithelial-mesenchymal transition (EMT) is an important hallmark of fibrogenesis through which epithelial cells lose their epithelial phenotype and transform into mesenchymal cells. It is known that the VDR plays an essential role in epithelial integrity and mitochondrial function, but its role in intestinal fibrosis remains unknown. Here, we investigated whether the VDR is involved in epithelial mitochondrial dysfunction that results in EMT in intestinal fibrosis. Using human CD samples, intestine-specific VDR-KO mice, and fibroblast cellular models, we showed that the expression of the VDR was significantly lower in intestinal stenotic areas than in nonstenotic areas in patients with chronic CD. Genetic deletion of the VDR in the intestinal epithelium exacerbated intestinal fibrosis in mice administered with dextran sulfate sodium or 2,4,6-trinitrobenzene sulfonic acid, two experimental colitis inducers. In addition, we found that vitamin D dietary intervention regulated intestinal fibrosis by modulating the intestinal expression of the VDR. Mechanistically, knocking down the VDR in both CCD-18Co cells and human primary colonic fibroblasts promoted fibroblast activation, whereas VDR overexpression or VDR agonist administration inhibited fibroblast activation. Further analysis illustrated that the VDR inhibited EMT in the HT29 cell model and that mitochondrial dysfunction mediated epithelial integrity and barrier function in VDR-deficient epithelial cells. Together, our data for the first time demonstrate that VDR activation alleviates intestinal fibrosis by inhibiting fibroblast activation and epithelial mitochondria-mediated EMT.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (34)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....