UGT86C11 is a novel plant UDP-glycosyltransferase involved in labdane diterpene biosynthesis

Labdane Andrographolide Andrographis Paniculata Acanthaceae Hydroxylation Transferase
DOI: 10.1016/j.jbc.2021.101045 Publication Date: 2021-08-04T22:37:43Z
ABSTRACT
Glycosyltransferases constitute a large family of enzymes across all domains life, but knowledge their biochemical function remains largely incomplete, particularly in the context plant specialized metabolism. The labdane diterpenes represent class phytochemicals with many pharmacological benefits, such as anti-inflammatory, hepatoprotective, and anticarcinogenic. medicinal kalmegh (Andrographis paniculata) produces bioactive diterpenes; notably, C19-hydroxyl diterpene (andrograpanin) is predominantly found C19-O-glucoside (neoandrographolide), whereas having additional hydroxylation(s) at C3 (14-deoxy-11,12-didehydroandrographolide) or C14 (andrographolide) are primarily detected aglycones, signifying scaffold-selective C19-O-glucosylation planta. Here, we analyzed UDP-glycosyltransferase (UGT) activity levels various developmental stages tissues an apparent correlation UGT spatiotemporal accumulation neoandrographolide, major C19-O-glucoside. analysis recombinant UGTs preferentially expressed neoandrographolide-accumulating identified previously uncharacterized UGT86 member (ApUGT12/UGT86C11) that catalyzes strict scaffold selectivity. ApUGT12 localized to cytoplasm catalyzed substrate selectivity demonstrated by bacterium hosts was comparable native activity. Recombinant showed significantly higher catalytic efficiency using andrograpanin compared 14-deoxy-11,12-didehydroandrographolide trivial andrographolide. Moreover, silencing plants led drastic reduction neoandrographolide content increased andrograpanin. These data suggest involvement plants. This might help developing chemotypes synthesis pharmacologically relevant diterpenes. Plants make astonishing diversity chemicals important overall fitness challenging environment also valuable pharmaceuticals industrial (1Pichersky E. Raguso R.A. Why do produce so terpenoid compounds?.New Phytol. 2018; 220: 692-702Crossref PubMed Scopus (182) Google Scholar, 2Lacchini Goossens A. Combinatorial control metabolism: Mechanisms, functions, consequences.Annu. Rev. Cell. Dev. Biol. 2020; 36: 291-313Crossref (15) 3Erb M. Kliebenstein D.J. Plant secondary metabolites defenses, regulators, primary metabolites: blurred functional trichotomy.Plant Physiol. 184: 39-52Crossref Scholar). pathway believed have originated because evolution diverse enzyme following gene duplication neofunctionalization (4Fernie A.R. Tohge T. genetics metabolism.Annu. Genet. 2017; 51: 287-310Crossref (72) A genome-wide about 15% protein-coding genes corresponds metabolic pathways (5Chae L. Kim Nilo-Poyanco R. Rhee S.Y. Genomic signatures metabolism plants.Science. 2014; 344: 510-513Crossref (168) Besides, often show promiscuity, leading product diversity. glycosyltransferases (GTs) forms life catalyze transfer sugar moiety from activated donors (e.g., nucleotide diphosphate/monophosphate lipid phosphate sugar) acceptor molecules, nucleotides, sugars, lipids, proteins, antibiotics, small molecules/specialized (6Lairson L.L. Henrissat B. Davies G.J. Withers S.G. Glycosyltransferases: Structures, mechanisms.Annu. Biochem. 2008; 77: 521-555Crossref (1228) 7Yonekura-Sakakibara K. Hanada An evolutionary view 1 glycosyltransferases.Plant J. 2011; 66: 182-193Crossref (222) In Carbohydrate-Active enZYymes database, multigene GTs broadly classified into 114 families depending on sequence similarity (http://www.cazy.org/GlycosylTransferases.html). involved glycosylation molecules grouped under GT1 family, representing largest GT For example, represents more than 25% 35% model plants, Arabidopsis rice (7Yonekura-Sakakibara referred UDP-glycosyltransferases (UGTs) considering they utilize UDP-sugar donor. majority cases, UDP-glucose donor, although UDP-galactose, UDP-xylose, UDP-rhamnose, UDP-glucuronic acid accepted some (8Lim E.K. Bowles cellular homeostasis.EMBO 2004; 23: 2915-2922Crossref 9Louveau Orme Pfalzgraf H. Stephenson M.J. Melton Saalbach G. Hemmings A.M. Leveau Rejzek Vickerstaff R.J. Langdon Field Osbourn Analysis two new arabinosyltransferases belonging carbohydrate-active (CAZY) glycosyltransferase provides insights disease resistance donor specificity.Plant 30: 3038-3057Crossref (26) 10Adiji O.A. Docampo-Palacios M.L. Alvarez-Hernandez Pasinetti G.M. Wang X. Dixon UGT84F9 flavonoid UDP-glucuronosyltransferase Medicago truncatula.Plant 2021; 185: 1617-1637Crossref (1) been subject immense interest owing roles biosynthesis pharmaceutically phytochemicals, regulation homeostasis, detoxification xenobiotics 11Bowles D. Lim Poppenberger Vaistij F.E. lipophilic molecules.Annu. 2006; 57: 567-597Crossref (333) 12Tiwari P. Sangwan R.S. N.S. linked glycosyltransferases: update expanding scopes.Biotechnol. Adv. 2016; 34: 714-739Crossref (106) 13Wilson A.E. Tian Phylogenomic UDP-dependent landscape metabolism.Plant 2019; 100: 1273-1288Crossref (32) 14Cai Jozwiak Holoidovsky Meijler M.M. Meir S. Rogachev I. Aharoni Glycosylation N-hydroxy-pipecolic equilibrates between systemic acquired response growth.Mol. Plant. 14: 440-455Abstract Full Text PDF (12) 15Nagatoshi Terasaka Nagatsu Mizukami Iridoid-specific glucosyltransferase Gardenia jasminoides.J. Chem. 286: 32866-32874Abstract (55) 16Owatworakit Townsend Louveau Jenner Hughes R.K. Qi Bakht Roy A.D. Mugford S.T. Goss oat (Avena) implicated acylation avenacins.J. 2013; 288: 3696-3704Abstract (33) most final step thereby, influencing solubility, storage, bioactivity (17Richman Swanson Humphrey Chapman McGarvey Pocs Brandle Functional genomics uncovers three glucosyltransferases sweet glucosides Stevia rebaudiana.Plant 2005; 41: 56-67Crossref (177) 18Seki Tamura Muranaka P450s UGTs: Key players structural triterpenoid saponins.Plant Cell 2015; 56: 1463-1471Crossref (132) 19Wu Cao Liu Zhu C. Klee Zhang Chen UDP-glucosyltransferase PpUGT85A2 controls volatile peach.J. Exp. Bot. 70: 925-936Crossref (29) Consequently, understanding features will be essential engineer improve provide benefits human health (14Cai 20Jing N. Gao Wu Y. Zhao Jin Du W. Schwab Song UGT85A53 promotes flowering via mediating abscisic glucosylation FLC transcription Camellia sinensis.J. 71: 7018-7029Crossref (5) 21Li Y.J. Dong R.R. Hou B.K. AtUGT76C2, cytokinin drought stress adaptation.Plant Sci. 236: 157-167Crossref (45) 22Kim Zheng Liao M.H. Jang I.C. Overexpression SrUGT76G1 alters steviol glycosides composition towards improved quality.Plant Biotechnol. 17: 1037-1047Crossref (19) 23He Jiang Yu Qiu Ma TaUGT6, novel enhances FHB DON wheat.Front. 11: 574775Crossref (11) 24Brazier-Hicks Offen W.A. Gershater M.C. Revett T.J. Edwards Characterization engineering bifunctional N- O-glucosyltransferase xenobiotic plants.Proc. Natl. Acad. U. 2007; 104: 20238-20243Crossref (199) However, huge even single species produced it quite impossible assign metabolism, solely based similarity. encode 120 215 UGTs, respectively, only biochemically characterized far, substrates remain known 25Tognetti V.B. Van, Aken O. Morreel Vandenbroucke van de Cotte De, Clercq Chiwocha Fenske R., Prinsen Boerjan Genty Stubbs K.A. Inzé Van et al.Perturbation indole-3-butyric homeostasis UGT74E2 modulates architecture water tolerance.Plant 2010; 22: 2660-2679Crossref (300) 26Haroth Feussner Kelly A.A. Zienkiewicz Shaikhqasem Herrfurth UGT76E1 contributes 12-O-glucopyranosyl-jasmonic formation wounded thaliana leaves.J. 294: 9858-9872Abstract (16) form broad range bioactivities (27Peters Two rings them all: labdane-related diterpenoids.Nat. Prod. Rep. 27: 1521-1530Crossref (267) group (28Koteswara, Rao Vimalamma C.V. Tzeng Y.M. Flavonoids andrographolides Andrographis paniculata.Phytochem. 65: 2317-2321Crossref 29Valdiani Talei Lattoo S.K. Ortiz Rasmussen Batley Rafii M.Y. Maziah Sabu K.K. Abiri Sakuanrungsirikul Tan Genoproteomics-assisted improvement paniculata: Toward promising molecular conventional breeding platform for autogamous affecting pharmaceutical industry.Crit. 37: 803-816Crossref (8) 30Burgos Alarcón Quiroga Manosalva Hancke Andrographolide, anti-inflammatory multitarget drug: All roads lead metabolism.Molecules. 26: 5Crossref 31Jiang Sheng F. Z. Fu Li paniculata (Burm.f.) Nees its constituent andrographolide potential antiviral agents.J. Ethnopharmacol. 272: 113954Crossref (22) 32Lo C.W. Lii C.K. Hong J.J. Chuang W.T. Yang Y.C. Huang C.S. H.W. Andrographolide inhibits IL-1β release bone marrow-derived macrophages monocyte infiltration mouse knee joints induced monosodium urate.Toxicol. Appl. Pharmacol. 410: 115341Crossref (4) Neoandrographolide, kalmegh, possesses anticarcinogenic, hypolipidemic, viricidal activities (33Kapil Koul I.B. Banerjee Gupta B.D. Antihepatotoxic effects diterpenoid constituents paniculata.Biochem. 1993; 46: 182-185Crossref (202) 34Wiart Kumar Yusof Hamimah Fauzi Z.M. Sulaiman Antiviral properties ent-labdene nees, inhibitors herpes simplex virus type 1.Phytother. Res. 19: 1069-1070Crossref (161) 35Liu Z.T. Ji vivo vitro neoandrographolide.Am. Chin. Med. 35: 317-328Crossref (59) 36Yang Shi H.X. C.H. Hypolipidemic mice rats.Phytother. 618-623Crossref 37Nantajit Jetawattana Suriyo Grdina Satayavivad diterpenoids protect against radiation-induced transformation BALB/3T3 cells.Radiat. 188: 66-74Crossref studies, superior aglycones 14-deoxy-11,12-didehydroandrographolide, suggesting possible role toward enhanced and/or bioavailability 38Batkhuu Hattori Takano Fushiya Oshiman Fujimiya Suppression NO production ex isolated paniculata.Biol. Pharm. Bull. 2002; 25: 1169-1174Crossref (83) 39Pfisterer P.H. Rollinger J.M. Schyschka Rudy Vollmar Stuppner Neoandrographolide natural chemosensitizer.Planta 76: 1698-1700Crossref starts cyclization reaction synthase, converting general precursor geranylgeranyl pyrophosphate ent-copalyl (Fig. 1). Previously, synthase (ApCPS2) catalyzing first committed biosynthetic (40Misra R.C. Garg Chanotiya Vasudev P.G. Ghosh Involvement diphosphate tissue-specific paniculata.Plant 240: 50-64Crossref (20) 41Garg Agrawal Misra Sharma transcriptome diterpenes.BMC Genomics. 16: 659Crossref (53) involves not identified. methyl jasmonate (MeJA)–inducible (UGT73AU1 UGT5), which andrograpanin, were identified, planta understood (42Li Lin Lai C.J. B.W. Tang J.F. X.L. Guo L.Q. Glucosyltransferase capable last biosynthesis.Org. Lett. 20: 5999-6002Crossref 43Sun Leng Yin Q. Xu Yao Xiong Xie al.The genome insight neoandrographolide.Plant 97: 841-857Crossref (44) To investigate large-scale tissues. Furthermore, 23 screened assay, identification (UGT86C11) manner steady-state kinetic ApUGT12, altered profiles ApUGT12-silenced strong transcript expression patterns suggested pivotal understand diterpenes, conducted comprehensive profiling (andrographolide, 14-deoxy-11,12-didehydroandrographolide) C19-O-glucosides (neoandrographolide, andrographiside, 14-deoxy-11,12-didehydroandrographiside) five (germinating seeds, cotyledonary leaf stage, 15-day-old 30-day-old 60-day-old plants) six (root, leaf, stem, sepal, petal, seedpod) S1). HPLC methanolic extracts revealed andrographolide, leaves (Figs. 2A, S2, S3, B). these roots germinating seeds. addition, considerable amounts seedpod, stage seedlings, respectively. amount ready conversion C19-O-glucosylation, thus limiting 2A). On other hand, corresponding (andrographiside indicated inefficient results potentially distinct assays carried out total protein extract Andrograpanin, acceptors, served assays. Diterpene assay monitored HPLC. considerably followed seedpod 2B). contained seeds could neoandrographolide. Likewise, contrast, lower S4). achieved detectable level Thus, contributed rate andrographiside 14-deoxy-11,12-didehydroandrographiside biosynthesis, 2, B, Unlike (andrographolide bear hydroxyl group(s) positions. Therefore, strongly selective glucosides. Andrograpanin clear maximum noticed plants; however, roots. Similarly, RNA-Seq 170 million sequencing reads (41Garg transcripts encoding retrieved annotation database BlastX analysis. Among 615 annotated families, 161 categorized GT1/UGT family. Notably, UGT73AU1 (contig ApU2595) UGT5 ApU62177) S5A). previous study similar roots; different examined before know whether contribute determined quantitative RT-PCR (qRT-PCR) correlated S6A). sepal. substantially playing corroborate differential if considered S4) ApCPS2, initial pathway, hypothesized coincide 38 nonredundant S5A Table full-length coding sequences transcripts, assemblies generated studies consulted (https://medplantrnaseq.org/) (44Cherukupalli Divate Mittapelli S.R. Khareedu V.R.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (77)
CITATIONS (16)