Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite

02 engineering and technology 0210 nano-technology
DOI: 10.1016/j.jcis.2021.03.005 Publication Date: 2021-03-09T21:21:27Z
ABSTRACT
Magnesium (Mg) alloy has wide potential applications due to its unique properties, but is apt to corrosion. Recently, superhydrophobic coatings are receiving great interest for corrosion protection of metals but suffer from short lifespan. Here, we report a strategy for long-term corrosion protection of Mg alloy by designing two-layer self-healing superamphiphobic coatings based on shape memory polymers (SMP) and attapulgite. The superamphiphobic coatings are composed of a bottom SMP coating containing a corrosion inhibitor (1, 2, 3-benzotriazole, BTA) and ceresine wax microparticles and a top superamphiphobic attapulgite coating. The two-layer self-healing coatings have excellent superamphiphobicity and initial anti-corrosion performance. The Mg alloy with the coatings can withstand immersion in 3.5 wt% NaCl solution for 80 days and neutral salt spray with 5 wt% NaCl for 54 days. Furthermore, the coatings show excellent self-healing capability towards various physical damages, such as 10 scratching/self-healing cycles at the same position, hexagonal star scratching and grid scratching. Moreover, the physically damaged coatings exhibit self-healing behavior of the microstructure and superhydrophobicity, driven by the shape memory effect of the bottom SMP layer. Thus, the self-healed coatings can still withstand 60 days of 3.5 wt% NaCl solution immersion and 30 days of 5 wt% NaCl salt spray. This study paves the way for applying super anti-wetting coatings for long-term corrosion protection of metals.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (104)