Coordination regulated pyrolysis synthesis of ultrafine FeNi/(FeNi)9S8 nanoclusters/nitrogen, sulfur-codoped graphitic carbon nanosheets as efficient bifunctional oxygen electrocatalysts

02 engineering and technology 0210 nano-technology 7. Clean energy
DOI: 10.1016/j.jcis.2021.11.101 Publication Date: 2021-11-22T15:58:46Z
ABSTRACT
Design of advanced carbon nanomaterials with high-efficiency oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities is still imperative yet challenging for searching green and renewable energies. Herein, we synthesized ultrafine FeNi/(FeNi)9S8 nanoclusters encapsulated in nitrogen, sulfur-codoped graphitic carbon nanosheets (FeNi/(FeNi)9S8/N,S-CNS) by coordination regulated pyrolyzing the mixture of the metal precursors, dithizone and g-C3N4 at 800 °C. The as-prepared FeNi/(FeNi)9S8/N,S-CNS exhibited distinct electrocatalytic activity and stability for the ORR with positive onset (Eonset) and half-wave (E1/2) potentials (Eonset = 0.97 V; E1/2 = 0.86 V) and OER with the small overpotential (η = 283 mV) at 10 mA cm-2 in the alkaline media, outperforming commercial Pt/C and RuO2 catalysts. This research provides some constructive guidelines for preparing efficient, low-cost and stable nanocatalysts for electrochemical energy devices.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (106)