Enhancing photocatalytic antibiotics mineralization and water oxidation via constructing interfacial electric field in plate-on-plate BiOCl/WO3 photocatalysts
DOI:
10.1016/j.jcis.2023.03.157
Publication Date:
2023-03-28T14:47:14Z
AUTHORS (6)
ABSTRACT
Two-dimensional materials and related plate-on-plate interfacial heterostructures offer great flexibility for integrating different atomic layers, providing an attractive scheme for the construction of built-in electric fields in photocatalysts. Here, we developed an interfacial engineering strategy to construct well-interfaced plate-on-plate BiOCl/WO3 heterojunctions for general enhanced photocatalytic oxidation reactions. BiOCl/WO3 heterojunctions exhibited significant enhancements in oxygen evolution and antibiotic degradation, with a rate of 9.5 times and 14.7 times higher than that of WO3. This enhancement is attributed to the well lattice matching contact surface of WO3 {020} plane with BiOCl {001} plane, which integrates a strong built-in electric field induced by Bi-O chemically bonds, providing atomically fast transport channels for electrons. These findings offer new guidelines for designing interfacial structures for high-performance oxidative photocatalysts and provide insights into the underlying interfacial carrier transport mechanisms.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (22)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....