Interface ion-exchange strategy of MXene@FeIn2S4 hetero-structure for super sodium ion half/full batteries
Sulfidation
Bimetallic strip
DOI:
10.1016/j.jcis.2023.07.071
Publication Date:
2023-07-16T20:38:02Z
AUTHORS (8)
ABSTRACT
Herein, a well-designed hierarchical architecture of bimetallic transition sulfide FeIn2S4 nanoparticles anchoring on the Ti3C2 MXene flakes has been prepared by cation exchange and subsequent high-temperature sulfidation processes. The introduction of MXene substrate with excellent conductivity not only accelerates the migration rate of Na+ to achieve fast reaction dynamics but provides abundant deposition sites for the FeIn2S4 nanoparticles. In addition, this hierarchical structure of MXene@FeIn2S4 can effectively restrain the accumulation of MXene to guarantee the maximized exposure of redox active sites into the electrolyte, and simultaneously relieve the volume expansion in the repeated discharging/charging processes. The MXene@FeIn2S4 displays outstanding rate capability (448.2 mAh g-1 at 5 A g-1) and stable long cycling performance (428.1 mAh g-1 at 2 A g-1 after 200 cycles). Moreover, the Nay-In6S7 phase detected by ex-situ XRD and XPS characterization may be regarded as a "buffer" to maintain the stability of the Fe-based components and enhance the reversibility of the electrochemical reaction. This work confirms the practicability of constructing the hierarchical structure bimetallic sulfides with the promising electrochemical performance.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (55)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....