Surface-modified composites of metal–organic framework and wood-derived carbon for high-performance supercapacitors
Carbon fibers
DOI:
10.1016/j.jcis.2024.09.247
Publication Date:
2024-10-01T23:58:16Z
AUTHORS (12)
ABSTRACT
The renewable nature, high carbon content, and unique hierarchical structure of wood-derived carbon make it an optimal self-supporting electrode for energy storage. However, the limitations in specific surface area and electrical conductivity defects pose challenges to achieving satisfactory charge storage in wood-derived carbon electrodes. Therefore, exploring diverse and effective surface strategies is crucial for enhancing the electrochemical energy storage performance. Herein, a decoration technique for enhancing aesthetic appeal involves applying a metal-organic framework (Ni/Co-MOF) containing nickel and cobalt onto the inner walls of wood tracheids. The sequential modification steps include carbonization, oxidation activation, and acid-etching. The Ni/NiO/CoO-CW-4 electrode, made by acid-etching carbonized wood (CW) doped with nickel, nickel oxide, and cobalt oxide for 4 h, has excellent surface area and pore size distribution, high graphitization degree, and exceptional conductivity. Furthermore, surface modification optimizes the surface chemistry and phase composition, resulting in a 0.8 mm thick Ni/NiO/CoO-CW-4 electrode with an exceptionally high areal capacitance of 16.76 F cm-2 at 5 mA cm-2. Meanwhile, the fabricated solid-state supercapacitor achieves an impressive energy density of 0.67 mWh cm-2 (8.38 mWh cm-3) at 2.5 mW cm-2 (31.25 mW cm-3), surpassing representative modified wood-based carbon electrodes by approximately 2-7 times. Additionally, the supercapacitor demonstrates exceptional stability, maintaining 96.21 % of capacitance even over 10,000 cycles. The parameters presented here demonstrate a significant improvement compared to those typically observed in most modified wood-derived carbon-based supercapacitors, effectively addressing common issues of low energy density and suboptimal cycling performance with wood carbon composites.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (67)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....