Strategies to prolong drug retention in solid tumors by aggregating Endo-CMC nanoparticles

Chitosan Drug Carriers Cell Line, Tumor Humans Nanoparticles Antineoplastic Agents Hydrogels Nanoparticle Drug Delivery System 3. Good health
DOI: 10.1016/j.jconrel.2023.07.006 Publication Date: 2023-07-19T14:59:39Z
ABSTRACT
Developing a highly effective nano-drug delivery system with sufficient drug permeability and retention in tumors is still a major challenge for oncotherapy. Herein, a tumor microenvironment responsive, aggregable nanocarriers embedded hydrogel (Endo-CMC@hydrogel) was developed to inhibit the tumoral angiogenesis and hypoxia for enhanced radiotherapy. The antiangiogenic drug (recombinant human endostatin, Endo) loaded carboxymethyl chitosan nanoparticles (Endo-CMC NPs) was wrapped by 3D hydrogel to comprise the Endo-CMC@hydrogel. After peritumoral injection, the Endo-CMC NPs were released, invaded deeply into the solid tumor, and cross-linked with intratumoral calcium ions. The cross-linking process enabled these Endo-CMC NPs to form larger particles, leading to long retention in tumor tissue to minimize premature clearance. This Endo-CMC@hydrogel, integrating the abilities of good tumoral penetration, long retention of anti-drug, and alleviation of hypoxia in tumor tissue, greatly improved the therapeutic effect of radiotherapy. This work provides a proof-of-concept of tumor microenvironment-responding and an aggregable nano-drug delivery system as promising antitumor drug carriers for effective tumor therapy.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (9)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....