Negatively charged bladder acellular matrix loaded with positively charged adipose-derived mesenchymal stem cell-derived small extracellular vesicles for bladder tissue engineering
Phosphatidylinositol 3-Kinases
MicroRNAs
Extracellular Vesicles
Tissue Engineering
Urinary Bladder
Humans
Animals
Mesenchymal Stem Cells
Rats
Extracellular Matrix
DOI:
10.1016/j.jconrel.2023.10.048
Publication Date:
2023-11-18T11:13:41Z
AUTHORS (10)
ABSTRACT
Adipose-derived mesenchymal stem cell-derived small extracellular vesicles (Ad-MSC-sEVs/AMEs) combined with scaffold materials are used in tissue-engineered bladders; however, the lack of retention leads to limited distribution of AMEs in the scaffold areas and low bioavailability of AMEs after bladder reconstruction. To improve retention of AMEs, we developed a novel strategy that modifies the surface charge of the bladder acellular matrix (BAM) via oxidative self-polymerization of dopamine-reducing graphene oxide (GO) and AMEs using ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD). We evaluated two BAM surface modification methods and evaluated the biocompatibility of materials and PPD and electrostatic adherence effects between PPD-modified AMEs and rGO-PDA/BAM in vivo and in vitro. Surface modification increased retention of AMEs, enhanced regeneration of bladder structures, and increased electrical conductivity of rGO-PDA/BAM, thereby improving bladder function recovery. RNA-sequencing revealed 543 miRNAs in human AMEs and 514 miRNAs in rat AMEs. A Venn diagram was used to show target genes of miRNA with the highest proportion predicted by the four databases; related biological processes and pathways were predicted by KEGG and GO analyses. We report a strategy for improving bioavailability of AMEs for bladder reconstruction and reveal that enriched miR-21-5p targets PIK3R1 and activates the PI3K/Akt pathway to promote cell proliferation and migration.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (76)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....