Use of the hormone-biosynthesis inhibitors fluridone and paclobutrazol to determine the effects of altered abscisic acid and gibberellin levels on pre-maturity α-amylase formation in wheat grains
Fluridone
Paclobutrazol
Anthesis
Alpha-amylase
DOI:
10.1016/j.jcs.2014.03.001
Publication Date:
2014-04-12T17:14:09Z
AUTHORS (5)
ABSTRACT
During germination of cereal grain, α-amylase formation is known to be inhibited by abscisic acid (ABA) and stimulated by gibberellins (GA). The role of these hormones in pre-maturity α-amylase (PMA) formation in wheat grains is less well understood. Our previous work with ABA and GA exogenously applied to grains demonstrated a clear stimulatory effect of GA, with little effect of ABA. Here, in glasshouse experiments, fluridone (ABA biosynthesis inhibitor; FD [20 μM]) or paclobutrazol (GA biosynthesis inhibitor; PB [20 μM]) were applied to intact, developing grains of the PMA-susceptible variety Rialto at 480 days after anthesis (DAA) to assess if a reduction in endogenous ABA and/or GA alters PMA formation. The experiments were conducted under non-PMA-inducing (ambient) and PMA-inducing (cold-shock) conditions. In solvent-only treated grains, a cold-shock significantly reduced the ABA content but increased GA and α-amylase activity. FD increased GA levels and α-amylase activity under ambient conditions, but decreased GA levels and α-amylase activity under cold-shock conditions, with no effect on ABA levels under either condition. PB had no effect under ambient conditions, but reduced GA levels and α-amylase under cold-shock conditions. These results indicate an association between GA levels at mid-grain development and PMA formation in wheat.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (28)
CITATIONS (29)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....