Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes
Kinetics
0303 health sciences
03 medical and health sciences
Biodegradation, Environmental
Textiles
Enzyme Stability
Laccase
Temperature
Ganoderma
Hydrogen-Ion Concentration
Coloring Agents
DOI:
10.1016/j.jenvman.2021.113619
Publication Date:
2021-08-28T22:00:05Z
AUTHORS (6)
ABSTRACT
By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 μM) and higher kcat/Km ratio (1.663 s-1 μM-1). Activity was stimulated by Cu2+ and β-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (73)
CITATIONS (33)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....