A novel insight on the intensification mechanism of sludge dewaterability by ionic liquids
Dewatering
Zeta potential
Sewage sludge
Cationic polymerization
DOI:
10.1016/j.jenvman.2023.117291
Publication Date:
2023-01-17T17:55:09Z
AUTHORS (6)
ABSTRACT
The huge output of sewage sludge has caused a remarkable environmental burden. Sludge dewatering is considered as an important way to reduce the sludge volume. Five imidazole-based ionic liquids were used to improve the dewaterability of sewage sludge. 1-ethyl-3-methylimidazolium dihydrogen phosphate ([Emim][H2PO4]) was screened out as a potential conditioner of sludge due to its excellent dewatering performance and reusability. The solid content of sludge filter cake after treatment with [Emim][H2PO4] was about 10% higher than that of sludge treated by cationic polyacrylamides (CPAM). The intensification mechanism of ionic liquids to the improvement of sludge dewatering performance was studied. The presence of acidic ionic liquids [Emim][H2PO4] resulted the increase of zeta potential from -14.57 ± 0.81 mV to -5.60 ± 0.30 mV and led to the protonation of biopolymers. Acidic ionic liquids [Emim][H2PO4] inactivated the microorganism and led to a porous and unconsolidated structure of the solid sludge particles. All these effects were conducive to destroy the microstructure of sludge and release water. However, [Emim]Cl, [Bmim][OTf] and [Hmim][OTf] showed little effect on the protonation of ionizable functional groups at near-neutral environment. The dissolution of biopolymer decreased the zeta potential and strengthened the electrostatic repulsion. So, they showed weaker intensification effects than CPAM.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (9)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....