A novel four-dimensional prediction model of soil heavy metal pollution: Geographical explanations beyond artificial intelligence "black box"
Interpretability
Sink (geography)
DOI:
10.1016/j.jhazmat.2023.131900
Publication Date:
2023-06-20T00:51:17Z
AUTHORS (13)
ABSTRACT
The current artificial intelligence (AI)-based prediction approaches of soil pollutants are inadequate in estimating the geospatial source-sink processes and striking a balance between the interpretability and accuracy, resulting in poor spatial extrapolation and generalization. In this study, we developed and tested a geographically interpretable four-dimensional AI prediction model for soil heavy metal (Cd) contents (4DGISHM) in Shaoguan city of China from 2016 to 2030. The 4DGISHM approach characterized spatio-temporal changes in source-sink processes of soil Cd by estimating spatio-temporal patterns and the effects of drivers and their interactions of soil Cd at local to regional scales using TreeExplainer-based SHAP and parallel ensemble AI algorithms. The results demonstrate that the prediction model achieved MSE and R2 values of 0.012 and 0.938, respectively, at a spatial resolution of 1 km. The predicted areas exceeding the risk control values for soil Cd across Shaoguan from 2022 to 2030 increased by 22.92% at the baseline scenario. By 2030, enterprise and transportation emissions (SHAP values 0.23 and 0.12 mg/kg, respectively) were the major drivers. The influence of driver interactions on soil Cd was marginal. Our approach surpasses the limitations of the AI "black box" by integrating spatio-temporal source-sink explanation and accuracy. This advancement enables geographically precise prediction and control of soil pollutants.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (21)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....