Development of a selective fluorescence-based enzyme assay for glycerophosphodiesterase family members GDE4 and GDE7
0303 health sciences
Phosphoric Diester Hydrolases
enzymology
Organophosphonates
Phosphatidic Acids
QD415-436
Naphthalenes
Biochemistry
Fluorescence
3. Good health
phospholipids/metabolism
03 medical and health sciences
HEK293 Cells
lysophospholipid
kinetics
Methods
MCF-7 Cells
Humans
Anilides
phospholipids/biosynthesis
phospholipases/D
Enzyme Assays
DOI:
10.1016/j.jlr.2021.100141
Publication Date:
2021-10-19T15:00:55Z
AUTHORS (6)
ABSTRACT
Lysophosphatidic acid (LPA) is a lipid mediator that regulates various processes, including cell migration and cancer progression. Autotaxin (ATX) is a lysophospholipase D-type exoenzyme that produces extracellular LPA. In contrast, glycerophosphodiesterase (GDE) family members GDE4 and GDE7 are intracellular lysophospholipases D that form LPA, depending on Mg2+ and Ca2+, respectively. Since no fluorescent substrate for these GDEs has been reported, in the present study, we examined whether a fluorescent ATX substrate, FS-3, could be applied to study GDE activity. We found that the membrane fractions of human GDE4- and GDE7-overexpressing human embryonic kidney 293T cells hydrolyzed FS-3 in a manner almost exclusively dependent on Mg2+ and Ca2+, respectively. Using these assay systems, we found that several ATX inhibitors, including α-bromomethylene phosphonate analog of LPA and 3-carbacyclic phosphatidic acid, also potently inhibited GDE4 and GDE7 activities. In contrast, the ATX inhibitor S32826 hardly inhibited these activities. Furthermore, FS-3 was hydrolyzed in a Mg2+-dependent manner by the membrane fraction of human prostate cancer LNCaP cells that express GDE4 endogenously but not by those of GDE4-deficient LNCaP cells. Similar Ca2+-dependent GDE7 activity was observed in human breast cancer MCF-7 cells but not in GDE7-deficient MCF-7 cells. Finally, our assay system could selectively measure GDE4 and GDE7 activities in a mixture of the membrane fractions of GDE4- and GDE7-overexpressing human embryonic kidney 293T cells in the presence of S32826. These findings allow high-throughput assays of GDE4 and GDE7 activities, which could lead to the development of selective inhibitors and stimulators as well as a better understanding of the biological roles of these enzymes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....