Growth, nutrient uptake and transcriptome profiling of rice seedlings in response to mixed provision of ammonium- and nitrate-nitrogen
2. Zero hunger
Nitrates
Seedlings
Nitrogen
Gene Expression Profiling
Ammonium Compounds
Oryza
Nutrients
Transcriptome
Plant Roots
DOI:
10.1016/j.jplph.2023.153976
Publication Date:
2023-03-25T18:55:51Z
AUTHORS (10)
ABSTRACT
Nitrogen (N) is a principal macronutrient and plays a paramount role in mineral nutrition of rice plants. Mixed provision of ammonium- and nitrate-nitrogen (MPAN) at a moderate level could enhance N uptake and translocation and promote growth of rice, but current understanding of their molecular mechanisms is still insufficient. Two rice lines of W6827 and GH751, with contrasting ability of N uptake, were subjected to four levels of MPAN (NH4+/NO3- = 100:0, 75:25, 50:50, 25:75) in hydroponic experiments. In terms of plant height, growth rate and shoot biomass, growth of GH751 tended to increase firstly and then decrease with enhancement in NO3--N ratio. It attained maximal level under 75:25 MPAN, with an 8.3% increase in shoot biomass. In general, W6827 was comparatively less responsive to MPAN. For GH751, the uptake rate of N, phosphor (P) and potassium (K) under 75:25 MPAN was enhanced by 21.1%, 20.8% and 16.1% in comparison with that of control (100:0 MPAN). Meanwhile, the translocation coefficient and content in shoots of N, P and K were all increased significantly. In contrast to transcriptomic profile under control, 288 differentially expressed genes (DEGs) were detected to be up-regulated and 179 DEGs down-regulated in transcription under 75:25 MPAN. Gene Ontology analysis revealed that some DEGs were up-regulated under 75:25 MPAN and they code for proteins mainly located in membrane and integral component of membrane and involved in metal ion binding, oxidoreductase activity and other biological processes. KEGG pathway enrichment analysis indicated that DEGs related to nitrogen metabolism, carbon fixation in photosynthetic organisms, photosynthesis, starch and sucrose metabolism, and zeatin biosynthesis were up- or down-regulated in transcription under 75:25 MPAN, and they are responsible for improved nutrient uptake and translocation and enhanced growth of seedlings.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....