Performance and microbial community analysis of anaerobic sludge digestion enhanced by in-situ microaeration
Biogas
Mesophile
Clostridia
Microbial consortium
Digestion
DOI:
10.1016/j.jwpe.2021.102171
Publication Date:
2021-06-11T13:11:27Z
AUTHORS (8)
ABSTRACT
Abstract The effectiveness of in-situ microaeration was investigated with varied air dosages [0–25 mL/(L·d)] to enhance mesophilic anaerobic digestion (AD) of sludge in semi-continuous systems in terms of specific biogas production and volatile solids (VS) removal rate, focusing on performance evaluation, microbial community analysis, and underlying mechanisms. The optimal dosage of 12.5 mL/(L·d) increased specific biogas production by 15.8 ± 7.3% and enhanced VS removal by 18.3 ± 1.6%. In-situ microaeration stimulated activity of hydrolytic enzymes, enlarged sludge particle size, and improved sludge dewaterability. MiSeq sequencing analysis showed that dominant bacterial and archaeal communities were remarkably different between in-situ microaeration and obligate AD process. The presence of oxygen enriched relative abundances of Deltaproteobacteria, Anaerolineae, Clostridia, Synergistia and Caldilineae, enabling the acid-producing process to metabolize more types of substrates. Due to the selective enrichment, in-situ microaeration significantly enriched aceticlastic methanogens rather than hydrogenotrophic methanogens in the AD reactor. Analysis of coupling microaeration pretreatment and in-situ microaeration for anaerobic digestion indicated that excessive microaeration decreased VS removal rate and methane yield owing to substrates consumption by facultative bacteria. In-situ microaeration-based AD could be a promising process for sludge treatment and bioenergy recovery.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (24)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....