Cost-affordable, biomedical Ti-5Fe alloy developed using elemental powders and laser in-situ alloying additive manufacturing

Titanium alloy Selective Laser Melting
DOI: 10.1016/j.matchar.2021.111526 Publication Date: 2021-10-22T01:42:02Z
ABSTRACT
Abstract Iron (Fe) is a potent β-stabaliser, capable to replace costly alloying elements such as V and Mo in forming cost-affordable, biomedical Ti alloys. Selective Laser Melting (SLM) is a mainstream additive manufacturing (AM) technology, competent in realizing near-net shaping of complex, quality parts. In this study, Ti-5Fe alloy was prepared by SLM using elemental powders of Fe and modified hydrogenated-dehydrogenated (HDH) Ti, aiming at providing a cost-affordable candidate biomedical Ti alloy. It is found that, under the “optimum printing parameters”, homogeneous distribution of Fe is possible by the in-situ alloying process. After further efforts in terms of impurity scavenging and heat treatment, the in-situ alloyed Ti-5Fe shows a combination of high strength, good ductility and good biocompatibility. The best mechanical properties achieved are ~865 MPa for tensile strength and ~12% for elongation. This study demonstrates the capability of laser in-situ alloying additive manufacturing in developing cost-affordable and high quality biomedical Ti materials.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (21)