Finite element modeling of continuous induction welding of thermoplastic matrix composites

Carbon fiber, Finite element analysis, Joining, Heat treatment, Induction welding, Thermoplastic resin 0205 materials engineering 02 engineering and technology 7. Clean energy
DOI: 10.1016/j.matdes.2017.02.024 Publication Date: 2017-02-10T21:11:12Z
ABSTRACT
Abstract Continuous induction welding for thermoplastic matrix composites requires an accurate modeling of the temperature distribution in the laminates, depending on the electromagnetic field. In this work, a transient three-dimensional finite element (FE) model was developed in order to study the heat transfer phenomena, and melting and crystallization in the welding area during the continuous induction welding of carbon fiber reinforced Poly(ether ether ketone) (CF/PEEK) laminates. The multiphysics problem was solved by coupling electromagnetic and heat transfer equations considering matrix melting and crystallization behavior. The model was able to simulate the continuous process along a linear path at a constant speed. The computed temperatures were in good agreement with experimental measurements. Several numerical simulation were used for selecting a processing window as a function of coil speed and current, for the welding of CF/PEEK joints. The results of welding experiments were evaluated by single lap shear tests and morphology characterization of the welded interfaces and fracture surfaces.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (72)
CITATIONS (76)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....