Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination
Nanofiltration
Thin-film composite membrane
Interfacial polymerization
DOI:
10.1016/j.memsci.2019.117396
Publication Date:
2019-08-21T05:55:59Z
AUTHORS (4)
ABSTRACT
Abstract Conventional piperazine (PIP)-based nanofiltration (NF) membranes feature a high water flux and a high retention for divalent salt ions. However, it remains a challenge to obtain permselective NF membranes with high water permeance and a good selectivity for monovalent ions. In this work, a new m-phenylenediamine (MPD)-based thin-film composite (TFC) NF membrane with excellent desalination performance was developed by interfacial polymerization on a solvent resistant Kevlar nanofibrous hydrogel substrate. The desalination performance of the ANF TFC membrane shifted from reverse osmosis (RO) into NF with a facile solvent treatment. The decreased membrane surface roughness, reduced surface zeta potential and increased surface hydrophilicity after solvent treatment yielding a high water permeability (14.4 L m−2 h−1 bar−1) for ANF TFC membrane, which is one order of magnitude higher than that of the pristine membrane and the hand-cast poly (m-phenylene isophthalamide) (PMIA) TFC membrane. The ANF TFC membrane showed an outstanding water-salt separation performance, with excellent rejections for multivalent salts (Na2SO4, 100%; MgSO4, 99.4%; MgCl2, 92.7%) and a high rejection for monovalent salt (NaCl, 80.3%), which is competitive with reference commercial membranes (NF90, NF270) tested in cross-flow filtration with 1000 mg L−1 salt solution at 6 bar, 25 °C. The newly developed TFC membrane was demonstrated to have great potential applications in water desalination, separation of organic compounds and dye wastewater treatment.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (118)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....