The RND protein is involved in the vulnibactin export system in Vibrio vulnificus M2799
DNA, Bacterial
0303 health sciences
DNA Mutational Analysis
Molecular Sequence Data
Membrane Transport Proteins
Sequence Analysis, DNA
Amides
Culture Media
03 medical and health sciences
Oxazoles
Vibrio vulnificus
Gene Deletion
DOI:
10.1016/j.micpath.2014.09.001
Publication Date:
2014-09-06T16:54:59Z
AUTHORS (12)
ABSTRACT
Vibrio vulnificus, an opportunistic marine bacterium that causes a serious, often fatal, infection in humans, requires iron for its pathogenesis. This bacterium exports vulnibactin for iron acquisition from the environment. The mechanisms of vulnibactin biosynthesis and ferric-vulnibactin uptake systems have recently been reported, while the vulnibactin export system has not been reported. Mutant growth under low-iron concentration conditions and a bioassay of the culture supernatant indicate that the VV1_0612 protein plays a crucial role in the vulnibactin secretion as a component of the resistance-nodulation-division (RND)-type efflux system in V. vulnificus M2799. To identify which RND protein(s) together with VV1_0612 TolC constituted the RND efflux system for vulnibactin secretion, deletion mutants of 11 RND protein-encoding genes were constructed. The growth inhibition of a multiple mutant (Δ11) of the RND protein-encoding genes was observed 6 h after the beginning of the culture. Furthermore, ΔVV1_1681 exhibited a growth curve that was similar to that of Δ11, while the multiple mutant except ΔVV1_1681 showed the same growth as the wild-type strain. These results indicate that the VV1_1681 protein is involved in the vulnibactin export system of V. vulnificus M2799. This is the first genetic evidence that vulnibactin is secreted through the RND-type efflux systems in V. vulnificus.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (44)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....