Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat
Drought Tolerance
MYB
Introgression
Indel
DOI:
10.1016/j.molp.2021.11.007
Publication Date:
2021-11-15T07:02:09Z
AUTHORS (15)
ABSTRACT
Drought is a major environmental factor limiting wheat production worldwide, and developing drought-tolerant cultivars is a central challenge for wheat breeders globally. Therefore, it is important to identify genetic components determining drought tolerance in wheat. In this study, we identified a wheat NAC gene (TaNAC071-A) that is tightly associated with drought tolerance by a genome-wide association study. Knockdown of TaNAC071-A in wheat attenuated plant drought tolerance, whereas its overexpression significantly enhanced drought tolerance through improved water-use efficiency and increased expression of stress-responsive genes. This heightened water-saving mechanism mitigated the yield loss caused by water deficit. Further candidate gene association analysis showed that a 108-bp insertion in the promoter of TaNAC071-A alters its expression level and contributes to variation in drought tolerance among wheat accessions. This insertion contains two MYB cis-regulatory elements (CREs) that can be directly bound by the MYB transcription activator, TaMYBL1, thereby leading to increased TaNAC071-A expression and plant drought tolerance. Importantly, introgression of this 108-bp insertion allele, TaNAC071-AIn-693, into drought-sensitive cultivars could improve their drought tolerance, demonstrating that it is a valuable genetic resource for wheat breeding. Taken together, our findings highlight a major breakthrough in determining the genetic basis underlying phenotypic variation in wheat drought tolerance and showcase the potential of exploiting CRE-containing indels for improving important agronomical traits.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (83)
CITATIONS (153)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....