The OsSRO1c-OsDREB2B complex undergoes protein phase transition to enhance cold tolerance in rice
Cold tolerance
Cold stress
Introgression
DOI:
10.1016/j.molp.2024.08.006
Publication Date:
2024-08-23T02:57:55Z
AUTHORS (12)
ABSTRACT
Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....