Direct interactions between cationic liposomes and bacterial cells ameliorate the systemic treatment of invasive multidrug-resistant Staphylococcus aureus infections

Zeta potential
DOI: 10.1016/j.nano.2021.102382 Publication Date: 2021-03-23T17:03:51Z
ABSTRACT
Invasive infections caused by antibiotic-resistant Staphylococcus aureus have posed a great threat to human health. To tackle this problem, a cationic liposomal Curcumin (C-LS/Cur) was developed and its effect against antibiotic-resistant S. aureus was investigated in this study. As expected, C-LS/Cur exhibited greater bactericidal capacity compared with its counterparts, probably because the negatively charged S. aureus favors electrostatic interactions rather than intercalation with cationic liposomal vesicles at the beginning of endocytic process, thereby effectively delivering Cur to its targets. We confirmed this hypothesis by monitoring zeta potential variation, collecting visual evidences through CLSM, FCM and TEM, and determining binding kinetics by BLI. Moreover, an excellent therapeutic efficacy of C-LS/Cur against invasive murine infection was also observed, which was due to the enhanced accumulation and retention in the targets. Therefore, cationic liposomes have great potential for the clinical application in the treatment of invasive antibiotic-resistant S. aureus infections.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (39)
CITATIONS (9)