PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis
FLNA
DOI:
10.1016/j.neurobiolaging.2017.03.016
Publication Date:
2017-03-31T02:10:16Z
AUTHORS (6)
ABSTRACT
We show that amyloid-β1-42 (Aβ42) triggers a conformational change in the scaffolding protein filamin A (FLNA) to induce FLNA associations with α7-nicotinic acetylcholine receptor (α7nAChR) and toll-like receptor 4 (TLR4). These aberrant associations respectively enable Aβ42's toxic signaling via α7nAChR to hyperphosphorylate tau protein, and TLR4 activation to release inflammatory cytokines. PTI-125 is a small molecule that preferentially binds altered FLNA and restores its native conformation, restoring receptor and synaptic activities and reducing its α7nAChR/TLR4 associations and downstream pathologies. Two-month oral PTI-125 administration to triple-transgenic (3xTg) Alzheimer's disease (AD) mice before or after apparent neuropathology and to 8-month wildtypes with milder neuropathologies reduced receptor dysfunctions and improved synaptic plasticity, with some improvements in nesting behavior and spatial and working memory in 3xTg AD mice. PTI-125 also reduced tau hyperphosphorylation, aggregated Aβ42 deposition, neurofibrillary tangles, and neuroinflammation. Efficacy in postmortem AD and Aβ42-treated age-matched control hippocampal slices was concentration-dependent starting at 1 picomolar (pM) concentration. PTI-125 is the first therapeutic candidate to preferentially bind an altered protein conformation and reverse this proteopathy.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (35)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....