Novel data analysis method for obtaining better performance from a complex 3D-printed collimator
Collimator
Sample (material)
SIGNAL (programming language)
DOI:
10.1016/j.nima.2021.165646
Publication Date:
2021-07-21T17:58:02Z
AUTHORS (6)
ABSTRACT
Abstract Additively manufactured scattered beam collimators are increasingly being employed to boost the sample to cell peak signal ratio in high pressure neutron diffraction studies because of manufacturing versatility and performance improvements. We study how the measured diffraction pattern is affected by the presence of a collimator downstream of the sample, and develop a novel protocol that provides more effective background rejection. This protocol takes into account critical performance-determinants that were identified in this study, namely: (i) effectively identifying the collimator pattern on the detector; (ii) understanding the dependence of this pattern on sample and cell composition; and (iii) accurately identifying and differentiating the different regions of the pattern on the detector based on the dependency of the cell or sample and finally (iv) resolving the intensities at regions of the detector where neutrons scattered from the sample are preferentially represented, in order to boost the sample to cell peak signal ratio. Application of this novel analysis protocol is shown to increase the collimator performance over the traditional method.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....