Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle

01 natural sciences 0105 earth and related environmental sciences
DOI: 10.1016/j.oregeorev.2012.02.008 Publication Date: 2012-03-08T15:06:43Z
ABSTRACT
Abstract Widespread Mesozoic Au and other hydrothermal polymetal (Zn–Pb–Cu–Mo–Ag–W–Fe–REE) deposits or smaller prospects occur in association with ancient mobile belts surrounding and cutting through the North China Carton (NCC). Among these, the gold ores of the Jiaodong Peninsula, Shandong Province, eastern NCC, represent the largest gold district in China. However, the genesis of these important gold mineralizations has remained controversial, notably their relationships to widespread mafic magmatism of alkaline affinity. The ore bodies of the Guocheng gold deposit on the Jiaodong Peninsula are fracture-controlled, sulfide-rich veins and disseminations, formed contemporaneously with abundant dolerite, lamprophyre and monzonite dikes at ca. 120 Ma. Dolerite dikes possess mantle-like major element compositions and alkaline affinity, associated with prominent subduction-type trace element enrichments. The dikes show petrographic and chemical evidence of magma mixing that triggered exsolution of magmatic sulfide and anhydrite crystallization, preserved as primary inclusions in phenocrysts. LA-ICP-MS analysis of magmatic sulfide inclusions demonstrates that metal abundance ratios (Ag, As, Au, Bi, Co, Cu, Mo, Ni, Pb, Sb, Zn) largely correspond to those of both unaltered bulk rock and bulk ore. Together with identical Pb isotope ratios of dolerite and bulk ore, this demonstrates that gold mineralization and dolerite dikes share a common source. Lead isotope signatures of the ore sulfides are much less radiogenic (17.08  206 Pb/ 204 Pb  207 Pb/ 204 Pb  208 Pb/ 204 Pb  We propose that early Cretaceous melting of subcontinental lithospheric mantle metasomatized by subduction fluids during Paleoproterozoic amalgamation of terranes to the eastern NCC along with Columbia supercontinent assembly generated mafic magmatism and associated gold deposits. Given the conspicuous association of Phanerozoic hydrothermal ore deposits associated with reactivated Paleoproterozoic mobile belts, we envisage that our genetic model, which largely corresponds to that which is proposed for the Bingham porphyry-Cu–Au–Mo deposit, USA, may explain much of the magmatic-hydrothermal activity and associated ore formation all around the NCC.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (102)
CITATIONS (93)