Development and comprehensive clinical validation of a deep neural network for radiation dose modelling to enhance magnetic resonance imaging guided radiotherapy
Artificial intelligence
Medical physics. Medical radiology. Nuclear medicine
Dose calculation
MRI-guided radiotherapy
R895-920
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
Online adaptive radiotherapy
RC254-282
004
DOI:
10.1016/j.phro.2025.100723
Publication Date:
2025-02-07T20:21:02Z
AUTHORS (7)
ABSTRACT
Background and purpose: Online adaptive magnetic resonance imaging (MRI)-guided radiotherapy requires fast dose calculation algorithms to reduce intra-fraction motion uncertainties and improve workflow efficiency. While Monte-Carlo simulations are precise but computationally intensive, neural networks promise fast and accurate dose modelling in strong magnetic fields. This study aimed to train and evaluate a deep neural network for dose modelling in MRI-guided radiotherapy using a comprehensive clinical dataset. Materials and methods: A dataset of 6595 clinical irradiation segments from 125 1.5 T MRI-Linac radiotherapy plans for various tumors sites was used. A 3D U-Net was trained with 3961 segments using 3D imaging data and field parameters as input, Root Mean Squared Error and a custom loss function, with full Monte-Carlo simulations as ground truth. For 2656 segments from 50 patients, gamma pass rates (γ-PR) for 3 mm/3%, 2 mm/2%, and 1 mm/1% criteria were calculated to assess dose modelling accuracy. Performance was also tested in a standardized water phantom to evaluate basic radiation physics properties. Results: The neural network accurately modeled dose distributions in both patient and water phantom settings. Median (range) γ-PR of 97.7% (87.5–100.0%), 89.1% (69.7–99.4%), and 60.8% (38.5–82.1%) were observed for treatment plans, and 97.1% (55.5–100.0%), 88.8% (38.8–99.7%), and 61.7% (17.9–94.4%) for individual segments, across the three criteria. Conclusion: High median γ-PR and accurate modelling in both water phantom and clinical data demonstrate the high potential of neural networks for dose modelling. However, instances of lower γ-PR highlight the need for comprehensive test data, improved robustness and future built-in uncertainty estimation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (32)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....