Measuring social inequality with quantitative methodology: Analytical estimates and empirical data analysis by Gini and k indices
WEALTH
INCOME
Physics - Physics and Society
Social inequality
05 social sciences
Gini and k-indices
FOS: Physical sciences
SCIENCE
Physics and Society (physics.soc-ph)
01 natural sciences
0502 economics and business
0103 physical sciences
Mixtures of distributions
Empirical data analysis
10. No inequality
ta515
DOI:
10.1016/j.physa.2015.01.082
Publication Date:
2015-02-19T20:06:51Z
AUTHORS (4)
ABSTRACT
22 pages, 7 figs, 2 tables<br/>Social inequality manifested across different strata of human existence can be quantified in several ways. Here we compute non-entropic measures of inequality such as Lorenz curve, Gini index and the recently introduced $k$ index analytically from known distribution functions. We characterize the distribution functions of different quantities such as votes, journal citations, city size, etc. with suitable fits, compute their inequality measures and compare with the analytical results. A single analytic function is often not sufficient to fit the entire range of the probability distribution of the empirical data, and fit better to two distinct functions with a single crossover point. Here we provide general formulas to calculate these inequality measures for the above cases. We attempt to specify the crossover point by minimizing the gap between empirical and analytical evaluations of measures. Regarding the $k$ index as an `extra dimension', both the lower and upper bounds of the Gini index are obtained as a function of the $k$ index. This type of inequality relations among inequality indices might help us to check the validity of empirical and analytical evaluations of those indices.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....