Inhibitory specificity and insecticidal selectivity of ?-amylase inhibitor from

Alpha-amylase
DOI: 10.1016/j.phytochem.2004.11.001 Publication Date: 2004-12-11T19:47:11Z
ABSTRACT
The primary structure and proteolytic processing of the alpha-amylase isoinhibitor alpha AI-1 from common bean (Phaseolus vulgaris cv. Magna) was determined by protein chemistry techniques. The inhibitory specificity of alphaAI-1 was screened with a panel of the digestive alpha-amylases from 30 species of insects, mites, gastropod, annelid worm, nematode and fungal phytopathogens with a focus on agricultural pests and important model species. This in vitro analysis showed a selective inhibition of alpha-amylases from three orders of insect (Coleoptera, Hymenoptera and Diptera) and an inhibition of alpha-amylases of the annelid worm. The inhibitory potential of alphaAI-1 against several alpha-amylases was found to be modulated by pH. To understand how alphaAI-1 discriminates among closely related alpha-amylases, the sequences of the alpha-amylases sensitive, respectively, insensitive to alphaAI-1 were compared, and the critical determinants were localized on the spatial alpha-amylase model. Based on the in vitro analysis of the inhibitory specificity of alphaAI-1, the in vivo activity of the ingested alphaAI-1 was demonstrated by suppression of the development of the insect larvae that expressed the sensitive digestive alpha-amylases. The first comprehensive mapping of alphaAI-1 specificity significantly broadens the spectrum of targets that can be regulated by alpha-amylase inhibitors of plant origin, and points to potential application of these protein insecticides in plant biotechnologies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (42)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....