Rational design of MnS nanoparticles anchored on N,S-codoped carbon matrix as anode for lithium-ion batteries

01 natural sciences 7. Clean energy 0104 chemical sciences
DOI: 10.1016/j.pnsc.2021.09.002 Publication Date: 2021-09-14T07:33:06Z
ABSTRACT
Abstract The manganese sulfide (MnS) has attracted more attention as anode material on energy storage and conversion field, owing to its high theoretical capacity (616 ​mA ​h ​g−1) and good electrochemical activity. However, low electronic conductivity and large volume expansion during charge-discharge processes have limited its further application. In order to address above mentioned problems, the composites, MnS nanoparticles embedded in N,S-codoped porous carbon skeleton (named as MnS/N,S–C composites), herein have been prepared successfully using metal organic framework (Mn-NTA) as template. The porous carbon skeleton not only can enhance electrode conductivity, but also relieve volume expansion during charge-discharge processes. Thus, the rational design towards electrode architectures has endowed MnS/N,S–C nanocomposites with superior electrochemical performance, which delivers the specific capacities of 676.7 ​mA ​h ​g−1 at the current density of 100 ​mA ​g−1.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....