Microbiome modulation, microbiome protein metabolism index, and growth performance of broilers supplemented with a precision biotic

2. Zero hunger 0303 health sciences Microbiota Body Weight broiler SF1-1100 Animal Feed metagenome Animal culture Diet 03 medical and health sciences microbiome metabolism IMMUNOLOGY, HEALTH AND DISEASE Dietary Supplements Animals Animal Nutritional Physiological Phenomena precision biotic Chickens
DOI: 10.1016/j.psj.2023.102595 Publication Date: 2023-02-16T01:21:47Z
ABSTRACT
The objectives of the present studies were to evaluate: 1) the in vivo impact of the supplementation with a precision biotic (PB) on the growth performance and microbiome modulation of broiler chickens; 2) the role of PB on the modulation of functional pathways of the microbiome collected from animals with low and high body weight gain, and 3) to develop a Microbiome Protein Metabolism Index (MPMI) derived from gut metagenomic data to link microbial protein metabolism with performance. The in vivo work consisted of 2 experiments with 2 treatments: Control vs. PB at 1.1 kg/MT of PB with 21 or 14 replicates of 40 birds per replicate, in experiments 1 and 2, respectively. Growth performance was evaluated in both experiments, and from experiment 1, cecal samples from one bird/replicate was collected on d 21 and 42 (n = 21/treatment) to evaluate the microbiome through whole genome sequencing. In the ex vivo assay, 6 cecal samples were collected from low body weight (BW) birds (at 10% below average), and 6 samples from high BW birds (at least 10% above average). The samples were incubated in the presence or absence of PB. After incubation, DNA was isolated to develop a functional genomic assay and the supernatant was separated to measure short-chain fatty acid (SCFA) production. The MPMI is the sum of beneficial genes in the pathways related to protein metabolism. In the in vivo grow out experiments, it was observed that the supplementation improved the BW gain by 3% in both studies, and the corrected feed conversion ratio (cFCR) by 3.7 and 3.4% in studies 1 and 2, respectively (P < 0.05). The functional microbiome analysis revealed that the PB shifted the microbiome pathways toward a beneficial increase in protein utilization, as shown by higher MPMI. In the ex vivo experiment, the PB increased the abundance of genes related to the beneficial metabolism of protein (quantitative MPMI), and the concentration of SCFA, regardless of the underline BW of the birds. Taken together, the microbiome metabolic shift observed in the in vivo study and higher MPMI, plus the observations from the ex vivo assay with higher SFCA production, may explain the improvement in growth performance obtained with the supplementation of PB.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (11)