Clinical impact of the detector size effect in 3D-CRT
Male
Prostatic Neoplasms
Reproducibility of Results
Sensitivity and Specificity
03 medical and health sciences
Imaging, Three-Dimensional
0302 clinical medicine
Chordoma
Humans
Pituitary Neoplasms
Radiotherapy, Conformal
Radiation Injuries
Radiometry
Algorithms
DOI:
10.1016/j.radonc.2004.10.012
Publication Date:
2004-12-15T16:44:13Z
AUTHORS (4)
ABSTRACT
The detector size artificially increases the measured penumbra of radiotherapy fields. The aim of this work is to determine the influence of the detector size when planning three-dimensional conformal radiation therapy (3D-CRT) treatments.Two anatomical sites of interest in 3D-CRT were studied: prostate and hypophysis chordoma. Conventional 3D-CRT treatments for two cases in these locations were planned with a FOCUS 4.0.0 (Computerized Medical Systems, USA) treatment planning system (TPS) equipped with Fast Fourier Transform Convolution (FFTC) and Multigrid Superposition (MGS) algorithms, making use of beams modelled from radiation profiles measured either with a 2.0 mm diameter detector (PFD(3G) diode) or with a 5.5 mm diameter detector (PTW-31002 ionisation chamber). These detectors cover up the range of detector sizes commonly used to measure radiation profiles for 3D-CRT. Dose-volume histograms (DVHs), radiobiological indexes, tumor control probability (TCP) and normal tissue complication probability (NTCP) were analysed and compared for planning target volumes (PTVs) and organs at risk (OAR) studied.Important differences in DVH were found. OAR received higher dose levels when a 5.5 mm detector was used to measure profiles compared to the case in which a 2.0 mm detector was used. A 2 Gy increment in the mean rectal dose was found when the larger detector was used. In the same way, NTCP of brain stem in hypophysis chordoma treatments was doubled when this detector was used.The current use of ionisation chambers of about 5 mm active diameter to get the necessary data to model treatment machines in radiotherapy treatment planning systems (TPS) implies a significant overirradiation of OAR close to the PTV in 3D-CRT treatments due to errors in the measured penumbra of beam profiles. To avoid this overirradiation, the measured profiles should either being acquired with a suitable detector size (2-3 mm active diameter) or being deconvoluted.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....