FUT2-dependent fucosylation of HYOU1 protects intestinal stem cells against inflammatory injury by regulating unfolded protein response
Lipopolysaccharides
Mice, Knockout
0301 basic medicine
Medicine (General)
Glycosylation
Fucosylation
Galactoside 2-alpha-L-fucosyltransferase
QH301-705.5
FUT2
Stem Cells
Apoptotsis
Unfolded protein response
Mice
03 medical and health sciences
R5-920
Unfolded Protein Response
Animals
Biology (General)
Intestinal stem cell
Inflammatory injury
Research Paper
Fucose
DOI:
10.1016/j.redox.2023.102618
Publication Date:
2023-01-28T07:30:35Z
AUTHORS (9)
ABSTRACT
The intestinal epithelial repair after injury is coordinated by intestinal stem cells (ISCs). Fucosylation catalyzed by fucosyltransferase 2 (FUT2) of the intestinal epithelium is beneficial to mucosal healing but poorly defined is the influence on ISCs. The dextran sulfate sodium (DSS) and lipopolysaccharide (LPS) model were used to assess the role of FUT2 on ISCs after injury. The apoptosis, function, and stemness of ISCs were analyzed using intestinal organoids from WT and Fut2ΔISC (ISC-specific Fut2 knockout) mice incubated with LPS and fucose. N-glycoproteomics, UEA-1 chromatography, and site-directed mutagenesis were monitored to dissect the regulatory mechanism, identify the target fucosylated protein and the corresponding modification site. Fucose could alleviate intestinal epithelial damage via upregulating FUT2 and α-1,2-fucosylation of ISCs. Oxidative stress, mitochondrial dysfunction, and cell apoptosis were impeded by fucose. Meanwhile, fucose sustained the growth and proliferation capacity of intestinal organoids treated with LPS. Contrarily, FUT2 depletion in ISCs aggravated the epithelial damage and disrupted the growth and proliferation capacity of ISCs via escalating LPS-induced endoplasmic reticulum (ER) stress and initiating the IRE1/TRAF2/ASK1/JNK branch of unfolded protein response (UPR). Fucosylation of the chaperone protein HYOU1 at the N-glycosylation site of asparagine (Asn) 862 mediated by FUT2 was identified to facilitate ISCs survival and self-renewal, and improve ISCs resistance to ER stress and inflammatory injury. Our study highlights a fucosylation-dependent protective mechanism of ISCs against inflammation, which may provide a fascinating strategy for treating intestinal injury disorders.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (22)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....