Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches
Partial shading
Statistical monitoring charts
13. Climate action
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
Fault detection
Photovoltaic systems
One-diode model
7. Clean energy
DOI:
10.1016/j.renene.2017.09.048
Publication Date:
2017-09-18T10:30:48Z
AUTHORS (5)
ABSTRACT
Abstract This study reports the development of an innovative fault detection and diagnosis scheme to monitor the direct current (DC) side of photovoltaic (PV) systems. Towards this end, we propose a statistical approach that exploits the advantages of one-diode model and those of the univariate and multivariate exponentially weighted moving average (EWMA) charts to better detect faults. Specifically, we generate array's residuals of current, voltage and power using measured temperature and irradiance. These residuals capture the difference between the measurements and the predictions MPP for the current, voltage and power from the one-diode model, and use them as fault indicators. Then, we apply the multivariate EWMA (MEWMA) monitoring chart to the residuals to detect faults. However, a MEWMA scheme cannot identify the type of fault. Once a fault is detected in MEWMA chart, the univariate EWMA chart based on current and voltage indicators is used to identify the type of fault (e.g., short-circuit, open-circuit and shading faults). We applied this strategy to real data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria. Results show the capacity of the proposed strategy to monitors the DC side of PV systems and detects partial shading.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (173)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....