Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts
Nanomaterial-based catalyst
Noble metal
Reusability
DOI:
10.1016/j.scib.2020.02.004
Publication Date:
2020-02-08T01:16:03Z
AUTHORS (8)
ABSTRACT
The direct hydrogenation of CO2 using H2 gas is a one-stone-two-birds route to produce highly value-added hydrocarbon compounds and to lower the CO2 level in the atmosphere. However, the transformation of CO2 and H2 into hydrocarbons has always been a great challenge while ensuring both the activity and selectivity over abundant-element-based nanocatalysts. In this work, we designed a Schottky heterojunction composed of electron-rich MoC nanoparticles embedded inside an optimized nitrogen-doped carbon support (MoC@NC) as the first example of noble-metal-free heterogeneous catalysts to boost the activity of and specific selectivity for CO2 hydrogenation to formic acid (FA) in liquid phase under mild conditions (2 MPa pressure and 70 °C). The MoC@NC catalyst with a high turnover frequency (TOF) of 8.20 molFA molMoC-1 h-1 at 140 °C and an excellent reusability are more favorable for real applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (44)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....