Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea
Chlorophyll
550
Chlorophyll A
Fresh Water
01 natural sciences
6. Clean water
Models, Chemical
Artificial Intelligence
13. Climate action
Republic of Korea
Water Pollution, Chemical
Neural Networks, Computer
14. Life underwater
Estuaries
Water Pollutants, Chemical
Environmental Monitoring
0105 earth and related environmental sciences
DOI:
10.1016/j.scitotenv.2014.09.005
Publication Date:
2014-09-19T07:46:01Z
AUTHORS (5)
ABSTRACT
Chlorophyll-a (Chl-a) is a direct indicator used to evaluate the ecological state of a waterbody, such as algal blooms that degrade the water quality in lakes, reservoirs and estuaries. In this study, artificial neural network (ANN) and support vector machine (SVM) were used to predict Chl-a concentration for the early warning in the Juam Reservoir and Yeongsan Reservoir, which are located in an upstream region (freshwater reservoir) and downstream region (estuarine reservoir), respectively. Weekly water quality data and meteorological data for a 7-year period were used to train and validate both the ANN and SVM models. The Latin-hypercube one-factor-at-a-time (LH-OAT) method and a pattern search algorithm were applied to perform sensitivity analyses for the input variables and to optimize the parameters of the two models, respectively. Results revealed that the two models well-reproduced the temporal variation of Chl-a based on the weekly input variables. In particular, the SVM model showed better performance than the ANN model, displaying a higher prediction accuracy in the validation step. The Williams-Kloot test and sensitivity analysis demonstrated that the SVM model was superior for predicting Chl-a in terms of prediction accuracy and description of the cause-and-effect relationship between Chl-a concentration and environmental variables in both the Juam Reservoir and Yeongsan Reservoir. Furthermore, a 7-day interval was determined as an efficient early warning interval in the two reservoirs. As such, this study suggested an effective early-warning prediction method for Chl-a concentration and improved the eutrophication management scheme for reservoirs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (82)
CITATIONS (214)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....