Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment: The lower Llobregat River basin case study (Barcelona, Spain)
Physics - Physics and Society
0207 environmental engineering
FOS: Physical sciences
Agriculture
02 engineering and technology
Physics and Society (physics.soc-ph)
15. Life on land
Nitrate
01 natural sciences
6. Clean water
12. Responsible consumption
Physics - Atmospheric and Oceanic Physics
Water pollution
13. Climate action
Atmospheric and Oceanic Physics (physics.ao-ph)
11. Sustainability
Ammonium
Stable isotopes
Plant protection products
0105 earth and related environmental sciences
DOI:
10.1016/j.scitotenv.2020.142377
Publication Date:
2020-09-16T06:54:47Z
AUTHORS (15)
ABSTRACT
Published in Science of the Total Environment<br/>The management of the anthropogenic water cycle must ensure the preservation of the quality and quantity of water resources and their careful allocation to the different uses. Protection of water resources requires the control of pollution sources that may deteriorate them. This is a challenging task in multi-stressed catchments. This work presents an approach that combines pesticide occurrence patterns and stable isotope analyses of nitrogen (delta15N-NO3-, delta15N-NH4+), oxygen (delta18O-NO3-), and boron (delta11B) to discriminate the origin of pesticides and nitrogenpollution to tackle this challenge. The approach has been applied to a Mediterranean subcatchment subject to a variety of natural and anthropogenic pressures. Combining the results from both analytical approaches in selected locations of the basin, the urban/industrial activity was identified as the main pressure on the quality of the surface water resources, and to a large extent also on the groundwater resources, although agriculture may play also an important role, mainly in terms of nitrate and ammonium pollution. Total pesticide concentrations in surface waters were one order of magnitude higher than in groundwaters and believed to originate mainly from soil and/or sediments desorption processes and urban and industrial use, as they were mainly associated with treated wastewaters. These findings are supported by the stable isotope results, that pointed to an organic origin of nitrate in surface waters and most groundwater samples. Ammonium pollution observed in some aquifer locations is probably generated by nitrate reduction. Overall, no significant attenuation processes could be inferred for nitrate pollution. The approach presented here exemplifies the investigative monitoring envisioned in the Water Framework Directive.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (47)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....