Response of denitrifying anaerobic methane oxidation processes in freshwater and marine sediments to polyvinyl chloride microplastics
DOI:
10.1016/j.scitotenv.2024.176988
Publication Date:
2024-10-18T19:44:29Z
AUTHORS (10)
ABSTRACT
Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in mitigating methane (CH4) in natural environments. The increasing presence of microplastics (MPs) in these environments due to human activities is a growing concern. However, the impact of MPs on n-DAMO microorganisms and their role in greenhouse gas regulation, particularly CH4 reduction, remains unclear. This study investigates the effects of polyvinyl chloride (PVC) MPs on n-DAMO activity and the associated microbial communities in freshwater and marine sediments at varying concentrations of (R0/M0-no addition, R1/M1-0.5 %, R2/M2-2%). The results showed that the presence of MPs significantly increased the n-DAMO rate (2.89-3.58 nmol 13CO2 g-1 d-1) compared to the control groups (R0: 1.29 nmol 13CO2 g-1 d-1, M0: 0.11 nmol 13CO2 g-1 d-1), with marine sediments showing a more pronounced response. Additionally, the proportional contribution of nitrate-DAMO processes increased following MP exposure. The presence of PVC MPs also altered the microbial diversity of n-DAMO. Upon the addition of MPs, the microbial community composition of n-DAMO in marine sediments changed more significantly. This study provides the first evidence of a positive impact of PVC MPs on n-DAMO processes, suggesting that the presence of PVC MPs in sediments could potentially contribute to the reduction of CH4 emissions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....