Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives

0301 basic medicine Medicine (General) iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs) iCaspase9 QH301-705.5 Induced Pluripotent Stem Cells Gene Expression Apoptosis Article Cell Line Mice 03 medical and health sciences R5-920 Genes, Reporter Animals Humans Clustered Regularly Interspaced Short Palindromic Repeats Biology (General) Spinal Cord Injuries Teratoma Cell Differentiation spinal cord injury 3. Good health Cell Transformation, Neoplastic induced pluripotent stem cells (iPSCs) Female Stem Cell Transplantation
DOI: 10.1016/j.stemcr.2017.02.003 Publication Date: 2017-03-02T19:29:30Z
ABSTRACT
Human induced pluripotent stem cells (iPSCs) are promising in regenerative medicine. However, the risks of teratoma formation and the overgrowth of the transplanted cells continue to be major hurdles that must be overcome. Here, we examined the efficacy of the inducible caspase-9 (iCaspase9) gene as a fail-safe against undesired tumorigenic transformation of iPSC-derived somatic cells. We used a lentiviral vector to transduce iCaspase9 into two iPSC lines and assessed its efficacy in vitro and in vivo. In vitro, the iCaspase9 system induced apoptosis in approximately 95% of both iPSCs and iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs). To determine in vivo function, we transplanted iPSC-NS/PCs into the injured spinal cord of NOD/SCID mice. All transplanted cells whose mass effect was hindering motor function recovery were ablated upon transduction of iCaspase9. Our results suggest that the iCaspase9 system may serve as an important countermeasure against post-transplantation adverse events in stem cell transplant therapies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (103)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....