First-principles calculation to investigate structural, electronic and optical properties of transition-metals intercalated bilayer SnS2

0103 physical sciences 01 natural sciences
DOI: 10.1016/j.surfin.2021.101545 Publication Date: 2021-10-20T08:47:02Z
ABSTRACT
Abstract Electronic, magnetic, and optical properties of AA-SnS2 bilayer doped with transition metals (TMs) were investigated using the density functional theory (DFT). It has been found that some TM-doped atoms (V, Cr, and Ni) prefer to occupy the octahedral site, while Mn, Fe, and Co atoms tend to occupy the tetrahedral sites. The ground state of single V-, Cr-, Mn-, Fe-, and Co-doped systems are magnetic, which comes mainly from 3d orbitals of TM atoms. Based on the charge density distribution, the covalent bonding features are between the TM and S atoms. In the case of 2-TM doping, V, Mn, Fe, and Co atoms evolve the system towards weak antiferromagnetism (AFM). Whereas the Cr-doped system has a weak ferromagnetic (FM) ground state. In addition, TM doping elements significantly modify the optical properties of the AA-SnS2 bilayer. These results show that the TM-doped AA-SnS2 bilayer can be a helpful candidate for spintronic and UV coating applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (5)