Oligoaniline intermediates in the aniline-peroxydisulfate system
Peroxydisulfate
Benzoquinone
DOI:
10.1016/j.synthmet.2008.11.002
Publication Date:
2008-12-24T07:11:16Z
AUTHORS (6)
ABSTRACT
Abstract Chemical oxidative polymerization of aniline using peroxydisulfate oxidant in aqueous pH 2.5–10.0 buffers yields electrically insulating brown powders that are believed to be mixtures of Michael-type adducts of benzoquinone monoimine and aniline at various stages of hydrolysis. A spectroscopically similar product is formed when solid 1,4-benzoquinone is added to an aqueous solution of aniline at room temperature in the absence of peroxydisulfate. This suggests that the peroxydisulfate oxidant in the aniline/S2O82− system provides a pathway for the formation of benzoquinone monoimine as an intermediate. Benzoquinone monoimine intermediate could be formed as a result of a Boyland–Sims rearrangement of aniline proceeding via the intermediacy of p-aminophenyl sulfate. Benzoquinone monoimine undergoes a series of conjugate 1,4-Michael-type addition/reoxidation/coupling steps with aniline or p-aminophenyl sulfate yielding the oligoaniline product. The precipitate that is isolated is also in the midst of two simultaneous pH dependent hydrolysis reactions: (i) hydrolysis of the imine groups to quinone, and (ii) hydrolysis of arylsulfates to phenols. The ratio of hydrolysis in each case was determined by the C/N ratio and sulfur elemental analysis values yielding analytical data that is consistent with experimentally determined values and also with our proposed reaction scheme. These findings offer a rationale for the high C/N ratios (>6.0) frequently observed in these systems while tracing the genesis of the residual sulfur in the product to unhydrolyzed arylsulfate. The oligoaniline product has previously been reported to have a novel poly-aza structure consisting of continuously linked –N–N–N– bonds, and alternately also reported to consist of phenazine-type linkages. This study is consistent with the latter and describes a pathway to phenazine coupling through a second and third stage hydrolysis of the arylsulfate and reoxidation with peroxydisulfate. There is no pathway for the formation of linear –N–N–N– linkages in the aniline/benzoquinone adduct and the striking similarity between its spectroscopic properties and the aniline/S2O82− adduct suggests that it is not a preferred pathway under these experimental conditions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (81)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....