Paraquat induces pulmonary fibrosis through Wnt/β-catenin signaling pathway and myofibroblast differentiation
DKK1
Myofibroblast
LRP5
Beta-catenin
DOI:
10.1016/j.toxlet.2020.08.004
Publication Date:
2020-08-11T15:59:41Z
AUTHORS (10)
ABSTRACT
Paraquat (PQ) poisoning-induced pulmonary fibrosis always results in fatal harm to patients. Our study aimed to investigate the functions of the Wnt/β-catenin pathway in PQ-induced pulmonary fibrosis. By comparing the proteomic profiles of rat lung tissues using protein array in the absence or presence of PQ, the Wnt/β-catenin signaling, as a fibrosis-related pathway, was discovered to be profoundly activated by PQ. The protein levels of Wnt/β-catenin signaling components including MMP-2, β-catenin, Wnt3a, Wnt10b, Cyclin D1, and WISP1 were increased in PQ-treated rat lung tissues. Surprisingly, PQ was found to be able to promote lung epithelial cells and fibroblasts differentiating into myofibroblasts by activating Wnt/β-catenin signaling pathway. Dickkopf-1 (DKK1), an antagonist of Wnt/β-catenin signaling pathway, could inhibit the myofibroblast differentiation and attenuate PQ-induced pulmonary fibrogenesis in vitro and in vivo. The expression levels of fibroblasts markers Vimentin, α-smooth muscle actin (α-SMA) and Collagen I was detected and found to be increased when PQ treated and restored with additional DKK1 treatment. In summary, these assays indicated that Wnt/β-catenin signaling pathway played a regulatory role in the differentiation of lung epithelial cells and fibroblasts, and the pathogenesis of pulmonary fibrosis related to PQ. Inhibition of the Wnt/β-catenin signaling pathway may be investigated further as a potential fibrosis suppressor for pulmonary fibrosis therapy.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (37)
CITATIONS (29)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....