Ultrasound super-resolution imaging with a hierarchical Kalman tracker
Contrast-enhanced ultrasound (CEUS)
Microscopy
Ultrasound localization microscopy (ULM)
0103 physical sciences
Microbubble tracking
01 natural sciences
Super-resolution imaging (SRI)
DOI:
10.1016/j.ultras.2022.106695
Publication Date:
2022-02-04T15:57:11Z
AUTHORS (10)
ABSTRACT
Microbubble (MB) tracking plays an important role in ultrasound super-resolution imaging (SRI) by enabling velocity estimation and improving image quality. This work presents a new hierarchical Kalman (HK) tracker to achieve better performance at scenarios with high concentrations of MBs and high localization uncertainty. The method attempts to follow MBs with different velocity ranges using different Kalman filters. An extended simulation framework for evaluating trackers is also presented and used for comparison of the proposed HK tracker with the nearest-neighbor (NN) and Kalman (K) trackers. The HK tracks were most similar to the ground truth with the highest Jaccard similarity coefficient in 79% of the scenarios and the lowest root-mean-square error in 72% of the scenarios. The HK tracker reconstructed vessels with a more accurate diameter. In a scenario with an uncertainty of 51.2μm in MB localization, a vessel diameter of 250μm was estimated as 257μm by HK tracker, compared with 329μm and 389μm for the K and NN trackers. In the same scenario, the HK tracker estimated MB velocities with a relative bias down to 1.7% and a relative standard deviation down to 8.3%. Finally, the different tracking techniques were applied to in vivo data from rat kidneys, and trends similar to the simulations were observed. Conclusively, the results showed an improvement in tracking performance, when the HK tracker was employed in comparison with the NN and K trackers.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (37)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....