Preparation of diblock copolymer nano-assemblies by ultrasonics assisted ethanol-phase polymerization-induced self-assembly

Chemistry Polymerization-induced self-assembly Nano assemblies Acoustics. Sound QC221-246 Ultrasonics 02 engineering and technology 0210 nano-technology QD1-999 Bioeffects of ultrasonic
DOI: 10.1016/j.ultsonch.2024.106855 Publication Date: 2024-03-24T00:18:15Z
ABSTRACT
Assemblies are widely used in biomedicine, batteries, functional coatings, Pickering emulsifiers, hydrogels, and luminescent materials. Polymerization-induced self-assembly (PISA) is a method for efficiently preparing particles, mainly initiated thermally. However, thermally initiated PISA usually requires a significant amount of time and energy. Here, we demonstrate the preparation of nano-assemblies with controllable morphologies and size using ultrasound (20 kHz) assisted ethanol-phase RAFT-PISA in three hours. Using poly (N, N-dimethylaminoethyl methacrylate) as the macromolecular reversible addition-fragmentation chain transfer agent (PDMA-CTA) to control the nucleating monomer benzyl methacrylate (BzMA), we obtained nano-assemblies with different morphologies. With the length of hydrophobic PBzMA block growth, the morphologies of the assemblies at 15 wt% solid content changed from spheres to vesicles, and finally to lamellae; the morphologies of the assemblies at 30 wt% changed from spheres micelles to short worms, then vesicles, and finally to large compound vesicles. With the same targeted degree of polymerization, nano-assemblies having a 30 wt% solid content display a more evolved morphology. The input of ultrasonic energy makes the system have higher surface free energy, results the mass fraction interval of solventphilic blocks (fhydrophilic) corresponding to the formation of spherical micelles is expanded from fhydrophilic > 45 % to fhydrophilic > 31 % under ultrasound and the fhydrophilic required to form worms, vesicles, and large composite vesicles decreases in turn. It is worth noting that the fhydrophilic interval of worms prepared by ultrasonics assisted PISA gets larger. Overall, the highly green, externally-regulatable and fast method of ultrasonics assisted PISA can be extended to vastly different diblock copolymers, for a wide range of applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (61)
CITATIONS (2)