Comparison of the Protective Effect of Polysorbates, Poloxamer and Brij on Antibody Stability Against Different Interfaces
DOI:
10.1016/j.xphs.2023.06.004
Publication Date:
2023-06-07T23:17:38Z
AUTHORS (6)
ABSTRACT
Therapeutic proteins and antibodies are exposed to a variety of interfaces during their lifecycle, which can compromise their stability. Formulations, including surfactants, must be carefully optimized to improve interfacial stability against all types of surfaces. Here we apply a nanoparticle-based approach to evaluate the instability of four antibody drugs against different solid-liquid interfaces characterized by different degrees of hydrophobicity. We considered a model hydrophobic material as well as cycloolefin-copolymer (COC) and cellulose, which represent some of the common solid-liquid interfaces encountered during drug production, storage, and delivery. We assess the protective effect of polysorbate 20, polysorbate 80, Poloxamer 188 and Brij 35 in our assay and in a traditional agitation study. While all nonionic surfactants stabilize antibodies against the air-water interface, none of them can protect against hydrophilic charged cellulose. Polysorbates and Brij increase antibody stability in the presence of COC and the model hydrophobic interface, although to a lesser extent compared to the air-water interface, while Poloxamer 188 has a negligible stabilizing effect against these interfaces. These results highlight the challenge of fully protecting antibodies against all types of solid-liquid interfaces with traditional surfactants. In this context, our high-throughput nanoparticle-based approach can complement traditional shaking assays and assist in formulation design to ensure protein stability not only at air-water interfaces, but also at relevant solid-liquid interfaces encountered during the product lifecycle.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (89)
CITATIONS (13)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....