scSwinFormer: A Transformer-Based Cell-Type Annotation Method for scRNA-Seq Data Using Smooth Gene Embedding and Global Features
DOI:
10.1021/acs.jcim.4c00616
Publication Date:
2024-08-05T12:35:44Z
AUTHORS (3)
ABSTRACT
Single-cell omics techniques have made it possible to analyze individual cells in biological samples, providing us with a more detailed understanding of cellular heterogeneity and biological systems. Accurate identification of cell types is critical for single-cell RNA sequencing (scRNA-seq) analysis. However, scRNA-seq data are usually high dimensional and sparse, posing a great challenge to analyze scRNA-seq data. Existing cell-type annotation methods are either constrained in modeling scRNA-seq data or lack consideration of long-term dependencies of characterized genes. In this work, we developed a Transformer-based deep learning method, scSwinFormer, for the cell-type annotation of large-scale scRNA-seq data. Sequence modeling of scRNA-seq data is performed using the smooth gene embedding module, and then, the potential dependencies of genes are captured by the self-attention module. Subsequently, the global information inherent in scRNA-seq data is synthesized using the Cell Token, thereby facilitating accurate cell-type annotation. We evaluated the performance of our model against current state-of-the-art scRNA-seq cell-type annotation methods on multiple real data sets. ScSwinFormer outperforms the current state-of-the-art scRNA-seq cell-type annotation methods in both external and benchmark data set experiments.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....