Synthesis of Rod-Shaped ZnO/Polysiloxane Micromotors with Patch-Dependent Motion Modes
02 engineering and technology
0210 nano-technology
DOI:
10.1021/acs.langmuir.2c00123
Publication Date:
2022-03-29T13:03:16Z
AUTHORS (5)
ABSTRACT
Inorganic particles with photocatalytic properties are excellent candidates for the fabrication of micromotors. To achieve self-propulsion, the geometric and chemical symmetries of inorganic particles should be broken. However, the synthesis of micromotors with different geometric and chemical symmetries remains challenging. In this paper, a simple synthesis method is proposed to prepare rod-shaped micromotors with different patches, leading to distinct geometric and chemical symmetries. The micromotors are composed of zinc oxide (ZnO) microrods partially patched with polysiloxanes at different positions. The patches of the micromotors can be roughly regulated by varying the amount of siloxanes used in the synthesis. These micromotors are propelled in H2O2 solution by an ionic self-diffusiophoresis mechanism, which exhibits two motion modes, including linear motion and circular motion, due to different patch positions. Moreover, the degradation of organic dyes by the micromotors depending on the patches is demonstrated.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....