Pushing the Limits of High Throughput PET-RAFT Polymerization
Polymers
1604 Inorganic Chemistry
Combinatorial Approach
02 engineering and technology
Discovery
Methacrylate
Transfer Radical Polymerization
540
2507 Polymers and Plastics
Temperature Raft
Multiblock
Robust
Oxygen-Tolerant
Mechanism
0210 nano-technology
2505 Materials Chemistry
1605 Organic Chemistry
DOI:
10.1021/acs.macromol.8b01600
Publication Date:
2018-09-20T15:49:32Z
AUTHORS (7)
ABSTRACT
We investigate a high throughput approach to polymer synthesis by employing photoinduced electron/energy transfer–reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Polymerization of a broad range of monomers, including acrylates, methacrylates, acrylamides, and styrenic monomers, was achieved directly in a multiwell plate by employing 5,10,15,20-tetraphenylporphine zinc (ZnTPP) as a photocatalyst under yellow LED light. Various parameters such as monomer concentration and degree of polymerization were investigated with respect to their effect on polymerization rate and the degree of control over the molecular weight and molecular weight distribution. Finally, the synthesis of well-defined multiblock copolymers (up to a hexablock copolymer) was shown to be achievable entirely within a multiwell plate without any intermediate purification. The versatility and ease of this oxygen tolerant polymerization in high throughput formats make it an excellent technique for the generation of ...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (104)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....