Miktoarm Stars via Grafting-Through Copolymerization: Self-Assembly and the Star-to-Bottlebrush Transition

01 natural sciences 0104 chemical sciences
DOI: 10.1021/acs.macromol.8b02321 Publication Date: 2019-02-12T19:39:14Z
ABSTRACT
The grafting-through copolymerization of two distinct macromonomers via ring-opening metathesis polymerization is typically used to form statistical or diblock bottlebrush polymers with large total backbone degrees of polymerization (NBB) relative to that of the side-chains (NSC). Here, we demonstrate that Grubbs-type chemistry in the opposite limit, namely NBB ≪ NSC, produces well-defined materials with excellent control over ensemble-averaged properties, including molar mass, dispersity, composition, and number of branch points. The dependence of self-assembly on these molecular design parameters was systematically probed using small-angle X-ray scattering and self-consistent field theoretic simulations. Our analysis supports the notion that two-component bottlebrush copolymers with small NBB behave like miktoarm star polymers. The star-to-bottlebrush transition is quantifiable for both statistical and diblock sequences by unique signatures in the experimental scaling of domain spacing and simulated dis...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (76)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....