Gigahertz Nano-Optomechanical Resonances in a Dielectric SiC-Membrane Metasurface Array

02 engineering and technology 0210 nano-technology 530 620
DOI: 10.1021/acs.nanolett.1c00205 Publication Date: 2021-05-20T22:32:26Z
ABSTRACT
Optically and vibrationally resonant nanophotonic devices are of particular importance for their ability to enhance optomechanical interactions, with applications in nanometrology, sensing, nano-optical control of light, and optomechanics. Here, the optically resonant excitation and detection of gigahertz vibrational modes are demonstrated in a nanoscale metasurface array fabricated on a suspended SiC membrane. With the design of the main optical and vibrational modes to be those of the individual metamolecules, resonant excitation and detection are achieved by making use of direct mechanisms for optomechanical coupling. Ultrafast optical pump-probe studies reveal a multimodal gigahertz vibrational response corresponding to the mechanical modes of the suspended nanoresonators. Wavelength and polarization dependent studies reveal that the excitation and detection of vibrations takes place through the metasurface optical modes. The dielectric metasurface pushes the modulation speed of optomechanical structures closer to their theoretical limits and presents a potential for compact and easily fabricable optical components for photonic applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....